Everyone interested robotics, computer vision, and computer science in general is cordially invited to the School of Computer Science research seminar
on Friday, 10/11/2017 at 2pm
in room JUN0001 (The Junction).
Modelling and Detecting Objects for Home Robots
Markus Vincze, Technical University Vienna
Abstract
In the near future service robots will start to handle objects in home tasks such as clearing the floor or table, making order or setting the table. Robots will need to know about all the objects in the environment. As a start, humans could show their favourite objects to the robot for obtaining full 3D models. These models are then used for object tracking and object recognition. Since modelling all objects in a home is cumbersome, learning object classes from the Web has become an option. While network based approaches do not perform too well in open settings, using 3D models and shape for detection in a hypothesis and verification scheme renders it possible to detect many objects touching each other. Finally, the models are linked to grasp point detection and warping, so that objects with small differences can be handled and the uncertainty of modelling as well as the robot grasping are taken care of. These methods are evaluated in settings for taking objects out of boxes, to pick up objects from the floor and for keeping track of objects in user homes.
Biography of Markus Vincze
Markus Vincze received his diploma in mechanical engineering from Technical University Wien (TUW) in 1988 and a M.Sc. from Rensselaer Polytechnic Institute, USA, 1990. He finished his PhD at TUW in 1993. With a grant from the Austrian Academy of Sciences he worked at HelpMate Robotics Inc. and at the Vision Laboratory of Gregory Hager at Yale University. In 2004, he obtained his habilitation in robotics. Presently he leads the “Vision for Robotics” team at TUW with the vision to make robots see. V4R regularly coordinates EU (e.g., ActIPret, robots@home, HOBBIT) and national research projects (e.g, vision@home) and contributes to research (e.g., CogX, STRANDS, Squirrel, ALOOF) and innovation projects (e.g., Redux, FloBot). With Gregory Hager he edited a book on Robust Vision for IEEE and is (co-)author of 42 peer reviewed journal articles and over 300 reviewed other publications. He was the program chair of ICRA 2013 in Karlsruhe and will organize HRI 2017 in Vienna. Markus’ special interests are cognitive computer vision techniques for robotics solutions situated in real-world environments and especially homes.